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ABSTRACT

The objective of this study was to develop a high-resolution-explicit-multi-block
numerical algorithm, suitable for efficient computation of the three-dimensional, time-
dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a
finite volume approach, using MUSCL-type differencing to obtain state variables at cell
interface. Variable interpolations were written in the x-scheme formulation. Inviscid
fluxes were calculated via Roe’s flux-difference splitting, and van Leer’s flux-vector
splitting techniques, which are considered state of the art. The viscous terms were

discretized using a second-order, central-difference operator.

Two classes of explicit time integration has been investigated for solving the com-
pressible inviscid/viscous flow problems —two-stage predictor-corrector schemes, and
multistage time-stepping schemes. The coefficients of the multistage time-stepping
schemes have been modified successfully to achieve better performance with upwind
differencing. A technique was developed to optimize the coefficients for good high-
frequency damping at relatively high CFL numbers. Local time-stepping, implicit resid-
ual smoothing, and multigrid procedure were added to the explicit time stepping scheme
to accelerate convergence to steady-state. The developed algorithm was implemented
successfully in a multi-block code. which provides complete topological and geometric
flexibility. The only requirement is C° continuity of the grid across the block interface.

The algorithm has been validated on a diverse set of three-dimensional test cases of
increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic

plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an



ONERA M6 wing, and (5) unsteady flow of a compressible jet impinging on a ground

plane (with and without cross flow). The emphasis of the test cases was validation of

code, and assessment of performance, as well as demonstration of flexibility.
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NOMENCLATURE
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dimensional and nondimensional Eulerian flux vectors in the x-direction
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Eulerian and viscous Reynolds Favre density averaged dimensional flux
vectors in the y-coordinate direction

Amplification factor
nondimensional Eulerian and viscous flux vectors in the n-direction

dimensional and nondimensional Eulerian flux vector in the y-direction
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o O O
L8]

R*, R~

St

dimensional and nondimensional viscous flux vectors in the y-direction

total enthalpy per unit volume
specific enthalpy per unit volume

Eulerian and viscous Reynolds Favre density averaged dimensional flux
vectors in the z-direction

nondimensional Eulerian and viscous flux vectors in the ¢-direction
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dimensional and nondimensional viscous flux vectors in the z-direction
restriction operator from h-spacing to 2h-spacing
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grid cell Jacobian of transformation
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coefficient of thermal conductivity

von Karman'’s constant 0.4
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turbulent thermal conductivity
finite-difference operator
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n-stage modified Runge-Kutta time integration
dimensional and nondimentional static pressure
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turbulent Prandtl number

potential energy

normalized contravariant velocity
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isentropically derived entropy value
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a angle of attack
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7 ratio of specific heats %ﬂ

A indicates eigenvalue

A diagonal eigenvalue matrix

UT turbulent eddy viscosity
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w vorticity
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T shear stress tensor

rR Reynolds stress tensor



combined stress tensor of 7% + 7
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gas constant
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CHAPTER 1
INTRODUCTION

1.1 Historical Background

Recent developments in numerical methods and their applications permit the solving
of complex, realistic geometries and configurations for compressible flows. Currently,
computational fluid dynamics (CFD) is used effectively to unravel and elucidate fluid
flow phenomena which are difficult to study in the laboratory. The demand to solve
finely detailed models of physics has challenged many researchers to come up with new
and efficient tools. This demand has resulted in revolutionary concepts in computer
architecture designs and software development.

The birth of CFD can perhaps be linked to the early work of the English mathe-
matician Richardson in 1917 [1]. He attempted to integrate the meteorological equations
numerically. It is interesting to note that he started this process, which evolved into a
new science, as an ambulance driver during World War I. He made the computaﬁons
by hand, [1]. His attempts were unsuccessful due to a limited theoretical understanding
of the stability of numerical methods, and to a lack of computing power. Richardson’s
failure outlined the areas which needed to be developed. In 1928 Courant, Friedrichs,
and Lewy [2] introduced their famous stability condition, which became subsequently
the CFL number, and represented a landmark mathematical result that has had a massive
impact on computational research.

The practical birth of CFD came in the late 1960’s when significant computing power

became available. Since then, there has been considerable progress in the field of CFD.



The growing field of aerodynamics, and the aviation industry have been the catalyst for
the revolutionary force of CFD. In this section, a brief review of previous Computational
Fluid Dynamics work related to the present work is presented. For a more general review

of CFD, the interested reader should review Refs. [1, 3-6].

One of the first major advances in Computational Fluid Dynamics was the work by
Hess and Smith [7], who introduced panel methods to solve the linearized potential flow
equation. Later the panel method was extended to lifting flows by Rubbert and Saaris
[8] and supersonic flows by Woodward [9]. In 1986, Kandil and Yates [10] extended
the method to solve the steady, full-potential equation. In 1987, Kandil and Hong [11],

successfully formulated the vortex-panel method in a moving frame of reference.

In the early seventies, two major breakthroughs were reported which allowed the
solution of non-linear mathematical models. Murman and Cole [12], devised the idea of
mixed differencing (central differencing in subsonic regions, and forward or backward
differencing in supersonic regions of flow). They employed a line relaxation method for
the entire flow field, which was partly elliptic and partly hyperbolic. Their work, and
the work of Jameson [13], was the catalyst for developing two- and three-dimensional
algorithms using the Small Disturbance Equation, and the Full Potential Equation.
An interesting review of the memoirs of Murman and Cole is presented in a review
paper by Hall [14]. The second major breakthrough was the work by Magnus and
Yoshihara [15]. They advanced the Euler Equation in time towards a steady-state,
thus transforming a mixed elliptic-hyperbolic problem into a purely hyperbolic one.
Another landmark in the history of CFD came in 1970, when McCormack introduced
his widely used predictor-corrector explicit difference scheme [16]. Subsequently, in
1981, McCormack [17] developed an implicit analogue of his explicit finite difference

method. In 1975, Warming and Beam [18] introduced a fully upwind predictor-corrector
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method, which is similar to the McCormack method. Briley and McDonald [19], and
Beam and Warming [20, 21] employed an Alternating Direction Implicit (ADI) scheme
for solving the Euler and Navier-Stokes equations. The roots of ADI schemes trace back
to Peaceman and Rachford [22], Douglas [23], and Douglas and Gunn [24]. Steger [25],
adapted the Beam and Warming scheme to general curvilinear coordinates. ADI evolved
to an effective tool and currently is employed in state-of-the-art codes designated ARC2D

and ARC3D [26].

On the other hand, another important family of time integration schemes —explicit,
multistage time-stepping schemes (Runge-Kutta methods)— started to evolve in the early
eighties. Jameson, Schmidt, and Turkel [27], introduced explicit, multistage time-stepping
schemes, to the CFD community. Explicit-multistage schemes were developed further,
and have been applied successfully to compute solutions to the Euler, and Navier-Stokes
equations, for two- and three-dimensional problems [28-35]. Explicit schemes combine
naturally with accelerating techniques such as: local time-stepping, residual smoothing,
and multigrid accelerating techniques. They are also well suited for parallel computing

[36, 37].

The restriction on the time step for explicit schemes was the catalyst to develop
implicit schemes. Implicit schemes require more computation per time step (iteration),
but allow a larger time step to be used. The implicit time integration scheme may be
stable for any step size, according to linear theory, yet it is limited in practice by the non-
linearity of the governing equations. Due to simplifications made during the development
of these methods (linearization) and the frequent use of explicit boundary conditions, the
maximum allowable Courant-Friedrichs-Lewy number (CFL) is reduced. To date, the
relative merits of implicit and explicit schemes are still an open debate for steady and

unsteady flow calculations.



Implicit residual smoothing extends the stability limit, and improves the damping
properties of the multistage time-stepping scheme. Lerat [38], introduced the idea
of residual smoothing for the Lax-Wendroff scheme [39]. Jameson and Baker [29]
applied the idea of implicit residual smoothing in conjunction with the modified Runge-
Kutta schemes. This procedure was developed further in Refs. [28, 33, 40-42], where
they employed a central-implicit-residual-smoothing operator. The use of an upwind-
residual-smoothing operator was employed by von Lavante and Gronner [43], and Blazek

et al. [44].

Multigrid acceleration techniques were developed originally by Fedorenko [45, 46]
starting in 1961. Subsequently Brandt [47] applied the technique to an elliptic set of
equations. The work by Brandt and many others has led to the popular use of muitigrid
by many in the fields of applied mathematics and computational engineering. Excellent
developments of the multigrid technique can be found in Refs. [48-50]. Multignd
was used successfully for solving the potential, Euler, and Navier-Stokes equations,
Refs. [51-55). Multigrid acceleration techniques performed well when combined with
central-difference methods, but the convergence rate deteriorated with upwind spatial
operators because they are less dissipative. One must ensure that the basic upwind
scheme exhibits good damping of high frequencies on both fine and coarse meshes. An
attempt to derive a mathematical operator to eliminate the high-frequency components

of the error should be pursued.

In the early 1980’s, computers were powerful enough to permit the computation of
solutions to the Euler equations. A new wave of inviscid upwind and central-difference
schemes evolved. Upwind schemes attempted to construct the flux by modelling the un-
derlying physics, as dictated by the sign of characteristic waves, while central-difference

schemes computed the interface flux as an average of the two adjacent cells, disregarding
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characteristic theory. A comparison between central-difference schemes, and upwind

schemes and how they are related is given by Swanson and Turkel [56].

A prevalent way to introduce upwinding into the governing systems for hyperbolic
conservation equations has been to split the flux according to the characteristic speed
(g, qtc)). Steger and Warming [57], were the first to devise a conservative-second-
order-flux-vector splitting-upwind scheme, without the use of limiters, for the solution
of the governing equations of gas dynamics. Anderson, Thomas, and van Leer (58],
developed the Monotone Upstream-centered Scheme for Conservative Laws (MUSCL)
approach with limiters which was incorporated in the Steger-Warming scheme. The
MUSCL approach resulted in a better shock capturing capability. The main disadvantage
of the Steger-Warming-flux-vector splitting scheme was that the backward and forward
fluxes were not differentiable. This leads to oscillation at shocks. van Leer [59], devised
an alternative splitting scheme. The advantage of van Leer’s flux-vector splitting over
the Steger-Warming flux-vector splitting scheme, was that the split flux-vectors were
smooth and had smooth first derivatives with respect to the Mach number, so that their

eigenvalues were also smooth [58].

The inviscid flux can be split in a number of ways. The Split Coefficient Matrix,
(SCM) as introduced by Chakravarthy, Anderson, and Salas [60], is a natural way of
splitting the flux based on the sign of the eigenvalues of the governing system of
equations. A similar scheme that is based on the theory of characteristic is Morreti’s
A-scheme [61]. Both the SCM- and A-schemes have been applied to the non-conservative
form of the governing equations, and require shock-fitting techniques in the presence of
shocks. The conservative form of the governing equations permit shock waves to be
captured as weak solutions to the governing equation [39, 62, 63], thus avoiding the

difficulty of applying shock-fitting techniques.
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In 1959, Godunov [64], introduced the idea of advancing in time by solving the
Riemann problem at each cell. This technique has been extended to higher order schemes
which are known today as Gudonov-type schemes, [65-71]. A review of Gudonov-type
schemes is presented by Roe [5], and Yee [72]. Currently, upwind schemes are being used
on a regular basis for computing solutions to the Euler and Navier-Stokes equations. They
have been implemented and validated in several state-of-the-art codes, such as CFL3D

[73], ISAAC [74], PAB3D [75 ] and FTNS3D [76] .

Alternatively, Jameson, Schmidt, and Turkel [27] have introduced multistage time-
stepping schemes, coupled with a central-difference operator and explicitly added dissi-
pation terms. The explicit dissipation term was a blend of second-order-difference and
fourth-order-difference terms. Second-order-difference terms suppress oscillations in the
neighborhood of shock waves, while fourth-order-difference terms are crucial for the sta-
bility and convergence to steady-state. Dissipation terms have been scaled by user defined
coefficients. Detailed discussion of the influence of the dissipation terms on the perfor-
mance and quality of steady-state solutions can be found in Kandil and Chuang [77],

Rizzi [78], Pulliam [79], and Swanson and Turkel [51].

Currently, the state-of-the-art in computational fluid dynamics replaces scalar dissipa-
tion with a matrix-valued dissipation function. Employing matrix dissipation enhances the
shock capturing capabilities of the central-difference technique, and reduces the smearing
of shocks and contact discontinuities which were characteristic of the original central-
difference schemes [51]. Central-difference operators, coupled with a matrix-valued dis-
sipation function, are nearly as accurate as upwind schemes, and have the merit of being

computationally cheaper and easier to program [56].

The numerical dissipation terms play an important role in the success of the compu-

tations by central-difference methods. For every new configuration, the exact (optimum)
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level of artificial dissipation is not known a priori. The level of numerical dissipation
can be turned up, by a novice user, to the point of masking the physics of the prob-
lem. A certain level of expertise with central-difference schemes and with the physical
problem of interest is required to select the optimum (acceptable) level of dissipation.
Central-difference schemes have been applied in state-of-the-art schemes, TLNS3D [28],

ARC2D and ARC3D [26] and FLOMG [32].

The application of the above numerical methods to realistic three-dimensional con-
figurations of significant geometric complexity is virtually impossible without the use
of Domain Decomposition techniques. Here, the computational domain is divided into
multiple blocks (zones) and the grid for each block is then generated. A computational
grid of this type adapts more easily to the shape of the body as well as to the flow
features. Typically, the transfer of information between the blocks is carried out explic-
itly by ensuring the conservation of fluxes across the block interfaces. The consequence
of this procedure, for an implicit operator, is a significant reduction in the maximum

allowable CFL number.

Generating a single body fitted grid for complex, three-dimensional realistic ge-
ometries is a difficult task to perform; for some configurations it is almost impossible
[80-82]. Several grid methodologies such as overlaid grids [83], patched grids [84],
blocked grids [85], and unstructured grids can be applied to simplify the grid generation,
provide geometric flexibility, and even provide mesh refinement. Several methods have
been investigated for unstructured grids, Refs. [86-89]. These methods require more
memory and computational time and fall short of their structured counterpart in terms of
efficiency and accuracy [87]. The theory and algorithms for unstructured grids have to

evolve before they can be used for solving practical three-dimensional problems.
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Explicit-upwind schemes appear to be a good compromise between explicit-central-
difference schemes, and implicit-upwind schemes. Schemes constructed along ﬁ;ese lines
combine the advantages of: simplicity; prudent use of computational resources; and
accuracy in resolving the flow field. ﬁpwind schemes are more complex and are usually
reported to be better suited for compressible viscous computation. Upwind schemes are
very effective in converging to steady-state on single grids of modest complexity. Most
of the currently used upwind schemes are implicit. Explicit schemes require less memory,
and are easily implemented in a multi-block environment. They are also naturally suited
for implementation on massively parallel computer architecturs. The main drawback of

explicit schemes is the limitation on the allowable time step.

If the explicit time-stepping scheme is augmented with suitable accelerating tech-
niques, such as local time-stepping, residual smoothing and multigrid acceleration, the
explicit method will be superior to its implicit counterpart. Variable coefficient resid-
ual smoothing will increase the stability range of the scheme, thus allowing the use of
a higher CFL number (larger time step), which enhances the rate of convergence and
removes the diffusion limit on the time step. Multigrid acceleration techniques will ac-
celerate the convergence to steady-state by using large time steps on coarser grids, and

help achieve convergence rates that are independent of the number of grid points [47]

Recent advances in computer architecture and algorithmic tools open the door for
a new wave of opportunities for constructing explicit, upwind-higher-order schemes.
Currently the existence of robust, multi-block, explicit, upwind schemes that can be
applied on a routine basis are not available. Upwind-high-order schemes are essential
tools, required to capture complicated physical phenomena associated with problems of

current interest.



Explicit-upwind-schemes are still in their infancy and many basic issues are yet to be
settled. In order to lay the foundation for future research, a joint analytical and numerical

study should be conducted to validate and demonstrate their capabilities and performance.

1.2 Objective of Present Work

The goal of the present work was to develop a general state-of-the-art, multi-block
algorithm, capable of solving the governing equations of fluid motion efficiently, for
a wide range of configurations with both internal and external flow. The requisite
algorithm should be simple, efficient, and robust. Itis required to damp the high frequency
component of the error (necessary for multigrid) effectively, while acquiring low levels
of numerical dissipation for accurate predictions of viscous effects, and still maintaining
high resolution on stretched grids. The developed algorithm will be used subsequently

to simulate complex three-dimensional, steady and unsteady flow problems.

Hence, a control-volume, explicit-multistage-high-resolution upwind scheme, suitable
for efficient computations using block structured grids, was desired. Upwind schemes
were selected due to their high degree of reliability in viscous flow computations and
their superior shock capturing capabilities [90]. The state variables at the cell interface
have been determined by MUSCL interpolation using the so-called x scheme. Two state-
of-the-art, upwind schemes: Roe's flux-differencing and van Leer’s flux-vector splitting
schemes, were utilized to evaluate the inviscid flux at the cell interface. The viscous
stress and heat flux terms in the governing equations have been centrally differenced.

In this study, the objective was to devise explicit, upwind time-stepping schemes
that can be combined successfully with upwind-spatial operators. Explicit schemes
have the merit of being computationally cheaper and easier to program and implement

in a multi-block code. Two classes of upwind schemes: multistage time-stepping
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schemes, and predictor-corrector schemes, were suggested and have been implemented
in the developed algorithm. Modified Runge-Kutta methods with standard coefficients
have been successful with central-difference spatial discretization. Yet, they have not
performed as well with upwind differencing. The standard coefficients have to be

modified to achieve better performance with upwind differencing.

The next objective was to augment the explicit time-stepping schemes with accel-
erating techniques, such as local time-stepping, implicit residual smoothing and the full

approximation storage (FAS), to enhance the rate of convergence to steady-state.

Current aerodynamics designs are often quite complex (geometrically). Flexible
computational tools are needed for the analysis of a wide range of configurations with
both internal and external flows. Hence, another objective was the implementation of the

developed algorithm in a multi-block code to allow for greater geometric flexibility.

The final goal was to validate the developed computer code on several test cases of
interest to demonstrate and assess the predictive capability of the algorithm. The test
cases considered were: corner flow, plume flow, laminar and turbulent flow over a flat
plate, an ONERA M6 wing, and the unsteady three-dimensional flow of a jet impinging

on a ground plane.

1.3 Thesis Outline

In chapter two, the mathematical formulation of the governing set of equations of
motion (Reynolds-Averaged Navier-Stokes equation, Navier-Stokes equation, and Euler
equation) are presented and discussed. Details of implementing the Baldwin-Lomax
algebraic eddy viscosity turbulence model in the algorithm are presented. In chapter three,
the finite volume formulation of the governing equations is presented. The MUSCL type

differencing, and the type of discretization for the inviscid and viscous flux is discussed.
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Two different upwind flux formulations —Roe’s flux-difference splitting, and van Leer’s
flux-vector splitting— are presented, and practical issues concerning their implementation
are discussed. In chapter four, the temporal discretization of the governing equations,
which represents a major part of this work is presented. Two classes of explicit
time integration schemes —multistage time-stepping schemes and predictor-corrector
schemes— are presented and discussed. Details of optimizing the multistage explicit
time integration scheme through local Fourier analysis of the scalar advection equation
are presented. Accelerating techniques, including local time-stepping, residual smoothing,
and multigrid acceleration techniques are presented in chapter five. In chapter six, the
multi-block capability of the developed algorithm is presented. The interaction between
multigrid and multi-block implementations are discussed. The boundary conditions
employed, in the developed algorithm, are presented within the framework of multi-block.
Several test cases of general interest to the computational fluid dynamics community were
conducted to validate, demonstrate and assess the performance and predictive capability
of the present algorithm. Results of these computations are reported in chapter seven.
The Conclusions for the present research work, and recommendations for future research

are presented in chapter eight.
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CHAPTER 2
GOVERNING EQUATIONS

The governing equations were derived from the basic principles of conservation of
mass, conservation of momentum, and éncrgy. The conservation laws were then coupled
with the thermodynamic properties and constitutive equations to yield the governing set
of equations for fluid motion. The derivation of the governing equations can be found
in [91, 92]. Three different sets of governing equations have been used pertaining to
the different test cases investigated in this study. These sets of equations are the Euler
equations, Navier-Stokes equations, and Reynolds-Averaged Navier-Stokes equations.
Each set is represented ultimately as an algebraic set of equations. The three sets of
governing equations have been implemented in the numerical algorithm. Coupled with the
appropriate set of boundary conditions, the developed algorithm is capable of computing

inviscid, laminar, and turbulent fluid flows numerically.

2.1 Navier-Stokes Equations

The time-dependent, compressible, three-dimensional, Navier-Stokes equations in
Cartesian Coordinates, written in strong conservation form (neglecting the body forces

and external heat sources) are:
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where Q is the state vector of the dependent variables, given by:
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The first row in the vector differential equation, eq. 2.1, is the conserved form of the

continuity equation, while the fifth row is the conserved form of the energy equation. The

second, third and fourth row are the conserved forms of the momentum equation in the x,

y, and z directions, respectively. It should be emphasized that while the conservation of

mass and energy are scalar equations, the conservation of momentum is a vector equation

with three components. In the absolute sense only the x-momentum, y-momentum, and

z-momentum are the Navier-Stokes equations of fluid mechanics. It is customary within

the computational fluid mechanics arena to refer to eq. 2.1 as the Navier-Stokes equations.

This terminology will be adopted in this study.

13



Fluid density is designated as p; u, v, and w are the velocity components in the x, y,
and z directions, respectively; E is the total energy; 7 are the components of tile shear
stress tensor; gx, gy, and g, are the components of the heat flux-vector in the x, y, and z
directions respectively; and T is the témperaturc. The superscript “~ " in vector eq. 2.1

indicates a dimensional quantity.

In this study we assume that the stress is linearly dependent on the rate of strain;
i.e., the Newtonian fluid assumption is adopted. The components of the viscous stress

tensor in Cartesian coordinates are given by

e R W I T
Fmn =2ﬁ66+i(-@+@ -a—'z)

vy ER 3z 8y @ 0z)"
*M=2ﬁ-a—a+i(a—a—+?—ﬁ+a—ﬁ>

oF 5% 8z a7 @ 0z) 26
_ _[8m 8B\ . ‘
Toy = H 3_+—5)= s

8

i
+

D Ol DY
£)

&) z-a>|

@
N)l ) N)l )y )
“+
\—/v
1
))

H)

~)
I

=)

<)
N)
I
=)
TN TN

Qv Q
Q
<)

p is the first coefficient of viscosity, and X is the second coefficient of viscosity. To
date, the value for A for air, and how to model it, especially for compressible flows, is
still disputed [93]. In this study we employ Stokes hypothesis; i.e., we assume the bulk

viscosity, K, is zero or negligible
K=A+3u=0 @.7)

Stokes hypothesis is not necessarily endorsed, but for lack of a better model, it has been
employed. It is understood that this assumption is not valid in shock regions and in regions

of high gradients [94]. Invoking Stokes hypothesis yields the following expression for
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the shear stress terms

a = EA(QQE _ov _ 2‘2)

2= 3#\*87z " 87 9z )’

S = 2,;(&2 _ou _ Q_@)

vy ~ 3¥\“87 "9z a9z )’

L _2.(,00 98 09

2= 37(255 52 52) 08
?AA= ﬁ(-a—i-*-?—ﬁ) = T~ .
Ty 37 ' 03 Ve

(8w 0B\ .

Tor= #(—zz + -—) oo

0
~ _~f0v W\ -
He=Raztay) T
The first coefficient of dynamic viscosity varies with temperature and can be approximated
by an approximation of Sutherland’s law [93, 95]
~ n

(L 2.9)

Bref Tyef
where ji,.s and f,, s are the dynamic viscosity and temperature at reference conditions.
This formulation is simple and gives reasonably good results. The parameter n is taken
to be 0.76.

The heat flux is modeled by Fourier’s law of heat conduction, where

. ~aF . -oT . =9T
(I?——k%, q;—-—kﬁ, and q';——k—a-‘?z: (210)

(2.11)

Here, Pr is the Prandtl number, and ¢, is the specific heat at constant pressure. The
Prandtl number is nearly constant for most gases (Pr = 0.72 for air).

The equation of state for a perfect gas relates the pressure to density and temperature
and is given by p = ﬁﬁf, where R is the gas constant, which relates the specific

heats for an ideal gas by:

(2.12)
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with ¢, representing the specific heat at constant volume. If we assume further a

calorically perfect gas

¢ =1¢T (2.13)

o~

where ¢ is the internal energy. Now, neglecting the potential energy, the total energy, E,

can be defined as the sum of the internal energy and kinetic energy;
E=p €+%(ﬁz+62+ﬁ?2) (2.14)

If we define v = %!’- as the ratio of specific heats, the above equations can be combined

to yield the relation between pressure and total energy
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2.2 Normalization of the Governing Equations.

Computing in an appropriate non-dimensional or normalized domain has the advan-
tage that all variables are of the same order of magnitude, which enhances the performance
and accuracy of numerical algorithms. Normalization eliminates the physical dimensions
from the equations. Thus allowing general characteristic parameters such as Reynolds
number, Mach number and Prandtl number to be changed independently. Hence para-

metric studies on any of these characteristic parameters can be performed easily.
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Different variables or combinations of variables can be used in the normalization

procedure. In this study we define the non-dimensional flow variables to be
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Here G, is the reference speed of sound; H is the total enthalpy, and L is a reference
length. The subscript ref indicates the reference condition. By substituting the non-

dimensional flow variables into the Navier-Stokes equations, eq. 2.1 we get;
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where M,,y, and R, are the reference Mach number and Reynolds number respectively,

while g,y is the velocity magnitude at reference conditions. Similar expressions can be

developed for G, G,, H, and H,.
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2.3 Curvilinear Coordinate Transformation

Most practical fluid flow problems of interest, are solved in domains with irregular
shapes and boundaries. This causes difficulty in implementing the boundary conditions.
In regions of high gradients, (shock waves, vortex regions, and shear layers), one needs
to pack grid points in order to capture details of the flow field, and render accurate
results. The uneven packing of grid points complicates the differencing operator. To
avoid these difficulties, the governing equations can be transformed into a body fitted
coordinate system, thus simplifying the numerical differencing and the implementation
of boundary conditions.

The curvilinear coordinate system is assumed related to the Cartesian coordinates by

0

0
§:a£+7]z +<za(

0
dz
0 6 0 (2.20)
6 §y6£+7lya +Cy6<

0

0 d
aZ fz 66 772 + Cz C
The transformation matrices are given by [4];
{z = J(ynzc - y,;z',), £y = ‘J(Inz< - -"’Czn)v (: = J(Iﬂy(' - xcyn)
me = —J(veze —veze) M= J(zezc —3cze)s  me= —J(zevc — 2c¥e)

(z = J(yfzn - ynZ{), Gy = —J(""Ezn - -’anf)v (z = J(xﬁyn - x,,y522 21)

where J is the Jacobian of the transformation;
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These formulations allow the governing equations to be written as;
B_Q O{F — F,} B{G— Gy} + 0{H — H,} —0 (2.23)
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where

_Q _1
=5 =7
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where,

U =ué +v£y + wé;
V =unz +vny +wn.

W =u(; + va + w(;
F,, G,, and H,, are presented in Appendix A.

2.4 Thin-Layer Navier-Stokes Equations

(£zﬁ‘+ ¢&,G + &H) F, = %(e,ﬁv +£,Gy + 5:1%)

oW
puW + p(s
pvW + p(y (2.25)
pr + p(.
(E +p)W

(2.26)

The Navier-Stokes equations govern the motion of unsteady compressible fluid flow.

The solution of the Navier-Stokes equations require a fine grid to capture the diffusive

effects. Performing the computations on a fine grid requires extensive amounts of

computer time and memory. At high Reynolds numbers, the effect of viscosity is confined

to a thin region near solid walls where a boundary layer exists. The dominant viscous

effects in the boundary layer arise from viscous diffusion normal to the body surface. A

desirable approximation is to neglect the viscous terms containing derivatives in directions

which are tangent to the body surface [26]. This assumption is often justified since the

viscous terms containing derivatives in directions parallel to a solid boundary are usually

substantially smaller than the terms with derivatives normal to the boundary. It would
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also be impractical to think of a fine grid in all three directions. Viscous grids are usually
dense along only the solid walls. Thus it makes sense to neglect the terms that are
not properly resolved, especially if they are an order of magnitude smaller than other

viscous terms.

The thin-layer Navier-Stokes equations are derived from the Navier-Stokes equations
by neglecting all cross derivatives in the viscous fluxes Fy, Gy, and H,. For example
all derivatives with respect to n and £ in the F, viscous flux are neglected. Similarly

for G,, and H,.

During development of the numerical algorithm, it was desired to maintain generality.
Since it is not known a priori which direction will coincide with the solid boundary, or
whether there will be more than one boundary surface, the thin shear layer approximation
was applied in all three directions. The thin shear layer equations used in the developed

algorithm are given by

9Q , O(F - F.) L 06 =G) | olH - Hi)

Bt o o % =0 (2.27)

where Q is the state vector of dependent variables. F, G, and H are the inviscid fluxes,

described in eq. 2.25, and
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Based on the type of problem computed one or more viscous fluxes can be

neglected [76, 96].
2.5 Reynolds-Averaged Navier-Stokes Equations

Almost all flows encountered in fluid mechanics are either fully turbulent or partially
turbulent. The nature of the flow and the purpose of the numerical study dictate the
accuracy levels for modeling turbulent effects or the justification for neglecting turbulent
effects completely (and simply assuming laminar flow). Turbulence enhances the rate of
heat transfer, and alters the skin friction. Turbulence also affects the location of flow
separation, the mechanism for separation, and the size of the separation bubble. Surface
pressure forces, lift and drag, are also affected by the level of turbulence in the flow.

Turbulent flows are in principle still governed by the Navier-Stokes equations, €q.
2.23; however extremely fine grids and higher order schemes are required to resolve all

time and length scales that accompany realistic turbulent flows. This type of computation
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is known as Direct Numerical Simulation; it represents a challenge to today’s computers
and numerical algorithms. Direct Numerical Simulation (DNS) has been restricted to
low Reynolds number flows since the number of grid points required is proportional to
the 9/4 power of Reynolds number, [97]. The significant cost of DNS calculations, even
for simple flows, makes them impractical for current engineering applications. Perhaps
with the development of new computer architectures, and with more parallel machines,
DNS will become a practical approach. From that point of view, if the grid is coarse and
must stll resolve the mean details of turbulent motion, then we must resort to modeling
the turbulent effects by superimposing them on the mean flow. At present, turbulence

modeling forms the basis of most of the computational work in turbulent flows.

Hinze [98] best described turbulent flow as “Turbulent fluid motion is an irregular
condition of flow in which the various quantities show random variation with time and
space coordinates so that statistically distinct average values can be discerned’. Follow-
ing the footsteps of Reynolds, we decompose the randomly changing flow properties into

mean and fluctuating components
g=q+4 (2.31)

where ¢ is the property being decomposed and ¢ is the fluctuating component; g is the

mean property defined by

to+ At

! q dt (2.32)

LAV
to
At is a time interval which is long compared to the period of any significant turbulent
fluctuations, but At is assumed to be short compared to the time scales associated with

the mean flow. If we apply the decomposition procedure to all state variables in the

Navier-Stokes equations, we get the Reynolds-Averaged Navier-Stokes equations which
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work well for simple incompressible flows. For compressible flows, triple correlations
involving density appear in the equations. Favré [98] suggested a mass weighted
decomposition for compressible flows to avoid the triple correlation involving density.
The following formulations were used to decompose the flow variables in the Navier-

Stokes equations 2.1.

. PG4 . Pu T ~ H
qu’_i» u=£_y-7 T='p77 H='p:'

P 2 2 P
where u=u+14, T=T+T, H=H+H

note p=9+p, p=pP+5 (2.33)

while (7 +p)d =0,

but ¢#0
Substituting the above formulations into the Navier-Stokes equations and averaging in
time, we get the mass averaged Navier-Stokes equation. The details of this procedure are

presented in Appendix B. The non-dimensional mass averaged Navier-Stokes equation

is given by
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9 a3 a9 T
| wi(efe - -%)+o% -
1 p #T)
where 0 = —| 5+ 5— (2.39)
B(p + pt) (Pr Per

p is the molecular viscosity, and pr is the eddy viscosity. The eddy viscosity is supplied
by the turbulence model. Pr is the laminar Prandtl number and Prr is the turbulent
Prandtl number. For air, we take Pr =0.72 and Prr = 0.9

Replacing x in the Navier-Stokes equations, eq. 2.17, with p + g1 and replacing
Fp with Wu—_}_m(-ﬁ- + -F—T-) yields the modeled Reynolds-Averaged Navier-Stokes
equations. Thus one can conclude that the mathematical formulations of the two sets

of equation are similar.



2.6 Baldwin-Lomax Algebraic-Turbulence Model

In this study, the Baldwin-Lomax turbulence model was selected to model the eddy
viscosity. The model is a two layer eddy viscosity model which implements a simple
algebraic expression to determine the turbulent eddy viscosity [99].

The inner layer eddy viscosity model is given by ;

Ryes

; = pl? 2.4
HTinner Pl lw‘Mref ( 0)
where
y+
l= kl y [1 - e:cp{——fF}:l (241)
du  Ov\’ v Ow\’ dw  Ou\’
— - _ 2 —_ —_—— — 242
! v (6y 61) + <3z 63/) + (6:1: Bz) (242)
and
+_ PuwWmaz chf (2.43)
Y y Bw Mt

Where, |w| is the magnitude of the vorticity; y is the normal distance from the nearest
solid wall, k; is a constant equal to 0.4, A% is a constant equal to 26.0, Wy, is the
maximum vorticity in a local vorticity profile along the coordinate direction normal to
the wall, p,, is the density at the wall; and p, is the molecular viscosity at the wall,
The original Baldwin-Lomax algebraic-turbulence model did not implement wpqy in
the formulation but rather suggested using the shear stress at the wall, 7. If there is
separation, implementing the shear stress at the wall yields inaccurate values for the
turbulence model. If there isn’t any flow separation on the wall, it can be shown that
wmaz €quals approximately 7,,. The second set of equations for the outer layer of the

Baldwin-Lomax algebraic-turbulence model are given as;

R,
HTouter = K2Ccp p Fuake Fklcb'ﬁi (2.44)
ref
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where

Ymarz Fraz

Foake =ming ., (2.45)

with the closure constant, Kz = 0.0168, C¢p = 1.6, Cy = 1.0 for transonic flow, and

Viig = (\/u2+v2+w2) - (\/u2+v2+w2)| (2.46)

lma: min
along the coordinate perpendicular to the surface at a particular wall location. For
example, equation 2.46 would be applied along a constant x-surface, if x is the streamwise

direction. The value ymqz corresponds to the location with F(y) = F(y).a,, Where

+
- ¥
F(y) = ylw| [1 - exp{— ye: }] (2.47)
In wake regions, the exponential term for F'(y) is set to zero. Alternatively, the Klebanoff
intermittency factor is used where;

6 _l
FyLEp = {1 +5.5[39—"—L£’3] ] (2.48)

Ymaz

and Cgreg = 0.3.

2.7 Euler Equations

In this section the governing equations for inviscid compressible fluid flow are
presented. This governing set of equations is known as the Euler Equations. The Euler
equations are considered as an approximation to the Navier-Stokes Equations. They are
derived by neglecting the viscous and heat flux terms from the Navier-Stokes Equations,
eq. 2.23. Euler Equations are useful models in fluid flow problems where only information
on the pressure distribution is required. Numerical results for the Euler equations are
important in preliminary studies and design, and the Euler equations are capable of

capturing shock wave interactions and contact discontinuities accurately.
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The three-dimensional, time-dependent, compressible Euler equations are written in

general curvilinear coordinates (£,7,() in a non-dimensional conservative form as :

0Q OJF 0G oH
2Tt tac " @49

where Q is the vector of dependent variables and is given by ;

p
1] P

Q== pv (2.50)
=7 o
E

F, G, and H are the inviscid flux vectors which are functions of the state vector @ and

are given by

pU pV pW
pulU + péz puV + piz puW + p(s
F={ poU+pt, }, G=4 poV+pmy (s and H =< pvW + ply (2.51)
pwU + p€; pwV + pn; pwW + p(;
(E+p)U (E+p)V (E+p)W

The Euler equations are a set of first-order hyperbolic equations in time. For steady-
state calculations, the mathematical nature of the equations changes from elliptic in the

case of subsonic flow to hyperbolic for supersonic flow.

Another set of equations that model compressible, irrotational, inviscid fluid flow
are the potential flow equations. The potential flow equations assume that the flow is
irrotational (7 x ¢ = 0), and do not account for vorticity and entropy changes. Thus
they are not capable of accurately capturing curved shocks, shock interactions or contact
discontinuities [92]). Hence the Euler equations were selected as the set of equations
that govern the inviscid compressible fluid flow in the numerical algorithm developed

in this study.
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CHAPTER 3
SPATIAL DISCRETIZATION

A control volume approach was employed in this study. The computational domain
was divided into a finite number of hexahedral cells. Each cell has its own volume V
and is bounded by its surface, S. Figure 3.1 shows a typical cell in the computational

domain. Each cell has six quadrilateral faces; each face defined by four vertices. The
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Figure 3 3.1 Schematic of Computational Cell

face of a hexahedral cell can collapse to an edge or even to a point, i.e., the four vertices
may lie at the same x, y, z location. By applying the basic principles of conservation of

mass, momentum, and energy to a stationary cell in the computational domain we extract
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the integral form of the governing equations

%//JQdV+/S/f-ndS=o (GB.1

F = (F=F)i + (G=Gy)j +(H— Hy)k,

where,

(3.2)

A

and n = n,i’ + ny_}' +n.k.

Q is the vector of conserved variables; F, F v,G, Gy, H, and H, are the flux-vectors which
are defined in eq. 2.23; n is the outward pointing unit vector normal to the surface S,
bounding the volume V. In the control volume approach, the state variables, Q;, are
stored in the center of each cell, and are considered to be a cell average rather than a

pointwise value at the cell center

Qijk = Tl/-//i//QdV (3.3)

1,3,k
The merit of the integral form of the governing equations is that it is valid everywhere in
the computational domain, even across shocks and contact surfaces, while the differential
form of the equations are valid only in smooth regions. The use of the conservative law
form permits shock waves to be captured as weak solutions to the governing equations
where the discontinuities evolve as part of the solution, and are captured within one or
more grid cells.

A semi-discrete form of the differential equation, eq. 2.23, can be written as

0Qi ;.

51 F(F = Fo)igru— (F = Fo)ioy i

'—5711
+(G—Gv)"' L —(G = Gy), ; 1k (3.4)
+(H - Hv).,j,k+% - (H - Hv)i,j.k—%— =0
where A¢, An,and A ( are taken equal to unity for simplicity. If the surface integrals in

eq. 3.1 are written as the sum of the contributions from the six faces of the computational
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cell, then the relation between the integral form of the governing equation, eq. 3.1, and
the semi-discrete form of the differential equation, eq. 3.4, becomes obvious. As a result,
a geometrical interpretation of the Jacobian and metric terms of the transformation can
be made. The Jacobian is calculated as the inverse of the cell volume; the vector —Vf is
the directed area of the cell interface to a / = constant coordinate direction, l=¢, 1, and
, 19 s th f the cell interface; the unit Uelle) consists of the directi
& is the area of the cell interface; the unit vector ““Tr= consists of the ection

cosines of the cell interface. The evaluation of the cell volume, and the directed area

is given in Refs. [92, 100, 101].

The finite volume method, when coupled with an explicit scheme, has the advantage
that the spatial discretization is decoupled from the temporal discretization. The temporal
discretization will be discussed in detail in the next chapter, while in this chapter the

construction of the interface flux, and the spatial discretization will be emphasized.

The interface flux can be constructed either by a central-difference scheme or
an upwind-scheme. Upwind schemes attempt to construct the flux by modelling the
underlying physics, as dictated by the sign of the characteristic waves. Central-difference
schemes compute the interface flux as an average of the two adjacent cells, disregarding
the characteristic theory. A comparison between central-difference schemes, and upwind

schemes, as well as how they are related, is given by Swanson and Turkel in Ref. [56].

The numerical procedure employed for the evaluation of the interface flux utilized a
second-order, central-difference approximation to compute the viscous flux (F,. Gy, H,) ,
while a high resolution upwind shock capturing scheme was used to compute the inviscid
flux (F, G, H). Roe’s flux-differencing scheme and Van Leer’s flux-vector splitting-scheme
were applied to the conservative forms of the governing equations to evaluate the inviscid

flux.
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A Monotone Upstream-centered Scheme for Conservative Laws (MUSCL) was used
to compute the inviscid flux at the cell interface. The state variables were extrapolated
from the cell center to the cell interface and the interface flux was computed subsequently.
An extrapolation of either the primitive or conservative variables can be performed. For
the most part, the primitive variables were extrapolated in this study, because they render
a smoother solution across shocks and slip lines and allow the use of a higher CFL
number, as will be shown in the results section. The extrapolation operator of the state
variables for the cell interface is based on the so-called x-scheme formulation where the

state variables to the right and left of the interface are computed as follows

QL =Q +S11-mVit (14 0]
: (19)

¢
Qﬁ; = Qit1 — Z[ (1= &)Vig1 + (1 + %) Qi1 ]
where, A; and v; are the forward and backward differences, respectively, defined as
A= Qiv1 - Qi

Vi= Qi— Qi

The value of the parameter « determines the spatial accuracy of the scheme. Table 1

(20)

shows the conventional choices for «, the corresponding accuracy and the truncation error
based on one-dimensional spatial analyses [101]. The parameter, ¢, is set equal to one for
high-order extrapolations, and to zero for first-order extrapolation. Although first-order
schemes possess good damping characteristics and allow a higher CFL number to be used,
they are too diffusive. In the present study, « = 1/3, k = -1, and « = 0 have been used.

High-order-accurate upwind schemes produce spurious oscillations and may develop
instabilities near shocks and contact discontinuities. These oscillations can be reduced by
the use of some kind of limiting procedures called limiters. This is achieved by imposing
a constraint on the gradients of the dependent variables or on the flux functions. Several

limiters are available in the literature [72, 102-104]. In the present study the min-mod
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limiter and the differentiable Vanalbda limiter have been employed. The two limiters are
discussed in Appendix C. The limiters prevent numerical oscillations, but at £he same
time reduce the accuracy of the scheme to first order near discontinuities. The main
disadvantage of limiters is that they léad to a limit cycle, with no apparent convergence.
The residual will converge to a certain level and then *“hang up”. To overcome this
problem, the second-order strictly upwind formulation, x = -1, was used which does

not require a limiter.

In summary, the present algorithm has employed a cell-centered, finite-volume ap-
proach with the state variables at the cell interface determined by the MUSCL interpo-
lation. The viscous and diffusion terms, at the cell interface, were discretized using a
second-order, accurate, central-differencing scheme, while a higher-order-upwind-scheme
(Roe’s flux-differencing scheme [66] or van Leer’s flux-vector splitting-scheme [59]) was
used to construct the inviscid flux. Both Roe’s flux-differencing scheme and van Leer’s
flux-vector splitting-scheme are capable of capturing relatively strong stationary —shocks
within one or two interior cells— if the shock is reasonably aligned with the grid. It
should be emphasized that the present algorithm employed a sequence of one-dimensional
operators in all three coordinate directions ¢, 7, and ¢. Thus the use of highly skewed,

non-orthogonal grids should be avoided, if possible, because the one-dimensional opera-

Table 1 Values of x and the Corresponding Truncation Error.

K Scheme Second-Order Truncation Error
13 Third Order 0

-1 Fully Upwind % (A 5)2 %ff_g_

0 Fromm l1_0 ( A§)2 %%1;_

12 Low TE Second Order —%(Af)z%igg'

0 Central —%(A{f%%g-
-13 No Name %(AE)Z%I’E{_
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tors assume that the waves interact normal to cell interfaces. This method of extending
one-dimensional schemes to multi-dimensions was found to be quite satisfactory for the
test cases investigated in this study. A truly multi-dimensional approach is still in its

infancy, and is computationally expensive [5, 105, 106].

3.1 van Leer’s Flux-Vector Splitting

A prevalent way to introduce upwinding into the governing systems of hyperbolic
conservation laws is to split the flux according to the characteristic speed (g, gxc)). In
this study, van Leer’s flux-vector splitting has been employed, because it yields sharp,
crisp shock surface. A disadvantage of van Leer’s scheme is that it smears slip lines
because it ignores the linear waves (entropy and shear waves) [107]). A brief summary
of the scheme is presented in this section. For more information about the scheme, the
interested reader should review the original paper of van Leer [59].

Following Ref. [59], the flux-vectors F, G, and H can each be split into two vectors,
a forward flux-vector, based on non-negative eigenvalues, and a backward flux-vector

based on non-positive eigenvalues.
F=F'+F ,G=G"+G ,H =H"+H~ (3.7)

For local supersonic Mach numbers:

My> 10, Ff=F, F =0
(3.8)
M, < —1.0, Fl+=0. FI_-’—F(

where | = £, 7, and ( to indicate the three coordinate directions.
For subsonic local Mach numbers, |M;| < 1.0 (in general notation for body fitted
coordinates [53]), a local scaled contravariant velocity component #; is defined as
lru+ v+ Lw

u =
JE+E+E
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where the local Mach number is given as
M =— (3.10)

and a is the local speed of sound. The fluxes are:

( 1 )

ix(—ﬁl:i:Qa)/’Y‘i'u
1 ~ _

FI:t = 7}%43” ly(—u1i2a)/7+v L (3.11)

L(—u+2a)/y+w

L faergy J
where,
5 {
Iy = ————— n=z,y, and 2 3.12)
JIE+E I
1
Fmass = oo (Mix 1)° (3.13)
and
_2 . 2
fe:k':wrgy — [ —Bulﬂ:‘y’iﬁ_ul.a+2a + u2+lgth ] (3.14)
Here;
Fe=F F,=G Fe=H (3.15)
U&' = U u,, =1 UC =W
and
B=v-1 (3.17)

The “+” indicates a forward flux and the “-” indicates a backward flux.
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Applying the split flux to the semi-discrete form of the governing equations, eq 2.27,
gives:

0Qi j k 4+ o + e
+ (G +G™ =Gy, 14— (G*+G™ =Go); 1k (3.18)

+(HT +H - H,,)LLH% —(Ht +H - H”)i,j,k—% =0

The present formulation, when applied to transonic and low supersonic flows, does
not require the use of flux limiters for essentially oscillation free shocks. This was pointed
out by Anderson, Thomas, and van Leer [58], von Lavante and Haert! [108], Melson and
von Lavante [109], and Cannizzaro, von Lavante, and Melson [110] and was explained

in more detail by van Leer [59]

3.2 Roe’s Flux-Difference Splitting

Roe’s flux-difference splitting is an upwind scheme that approximates the Riemann
problem at an interface between two cells by Roe’s averaging procedure [66]. Roe’s
scheme provides an exact solution to an approximate Riemann problem, and is capable
of handling slip lines with less smearing. The idea of advancing the solution to the next
time-level by solving a Riemann problem at each cell interface was first introduced by
Gudonov [64]. The Riemann problem and the different waves associated with 1t are
illustrated in Fig. (3.2). A good review of the different Riemann solvers is given in

Refs. (6, 72, 111].
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Roe’s scheme is used widely in practical applications of computational fluid dynamics
because it results in an efficient and accurate computation form. A comparison of
different numerical flux formulas for the Euler and Navier-Stokes equations, Ref. [107],
recommended the use of the Roe scheme. That recommendation was based on the fact that
the interface flux computed by the Roe scheme includes information about all different
waves —linear and non-linear— by which the neighboring cells interact. The scheme
gives good results when shocks, contact discontinuities, and slip lines are aligned with
the grid. The main advantage of the scheme is that it returns the exact solution whenever
O and QR lie on opposite sides of shocks and contact discontinuities. However, Roe’s
scheme can also represent an expansion shock due to the lack of a naturally constructed
entropy condition.

The interface flux-vector F; is evaluated as

(Fus), = 5(Fri@n) + Fu{Qu} - 4](@r - Qu)] (319

F; and Fg are the flux-vectors computed from the left and right states, and A is the

Roe averaged flux Jacobian matrix

A= 40| (3.20)



where

_0F
A= 55 (3.21)
and
Al = selalsg! (3.22)

Se and 5 ! are the right and left eigenvectors of Roe’s averaged Jacobian matrix A; A

is the diagonal matrix of the eigenvalués of A. The Roe averaged state is computed as

P = VPRPL
uLV/PL + URVPR

VPL+ /PR
vL\/PL + VR\/PR

VPL+ /PR
wr\/pPL + WR\/PR . (3.23)
VPL + /PR
Hi\/pr + Hp\/PR

VPL + VPR

a=\ﬂ—1)[ﬁl—é—{a’-’+m+w2}

The tildes refer to the Roe averaged quantities. The last term in eq. 3.19, ie.

e
i

e
i

g,
I

H

‘A’(Q r — Qp), is a damping term due to the upwind character of the scheme and is
given in detail in Ref. [55] as

[ a4 |
tay + a5 + ag

|4](@r - Qu) = | b +bas +ar (3.24)
way + ;a5 + og
I as ]

where,

01&

as = Hoy + #as + tag + a7 + wag — po— (3.25)
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and

= [ L)l (a0 - 3F)
a2 = ol |l + allap + pisay
a3 = 2;2 -\!Ta | — al(Ap — paduy)
a4 = a1+ ax+oa3
(3.26)
as = a(az — a3)
ap = —\/JE lwlp(Au — I Aup)
ar = %?hMMAv—@Am)
ag = %—a luilp(Aw ~ [, Aup)
with /5= (/I2+12+12,forl= ¢ n, or (. The A refers to the difference between

the state variables on the left and right sides of the cell interface, such as Ap = pp —p;.
Here,

Fe=F F,=G F.=H (327)

and

ug = u Uy =V ue = w (3.28)

For more information about the Roe scheme, the interested reader should refer to the

original work by Roe, Refs. {65, 66].
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CHAPTER 4
TIME INTEGRATION

In this study emphasis was placed on the simulation of complex three-dimensional
steady, and unsteady fluid flow problems. The selection of a particular type of time
integration technique, whether implicit or explicit, will determine the characteristics of
the numerical method used to investigate the fluid problem of concern. In this study,
explicit time-stepping schemes were used to construct the algorithm for solving the time-

dependent, compressible, Euler, and Navier-Stokes equations.

There are a large number of explicit schemes that have either been used previously or
are still in use for solving the compressible flow equations. The desired numerical method
should be simple, robust, have effective damping of high frequency errors (necessary
for multigrid), have low dispersion (low phase errors will reduce spurious oscillations
and result in faster convergence rates), low levels of numerical dissipation for accurate
predictions of viscous effects and it should maintain high resolution on stretched grids.
Programing simplicity is another important issue, since the goal is to implement the

time-stepping scheme in a multi-block code, and on massively parallel machines.

However, no generic time-stepping scheme was found that satisfied all of the re-
quirements, thus it was decided to develop explicit time-stepping schemes that could be
tailored to our needs. Two similar but distinct time-stepping schemes were developed
for the purpose of solving the compressible, time-dependent, governing set of equations.
The two schemes were the multistage time-stepping scheme, and the Predictor-Corrector

Scheme. Both schemes are explicit, but they are distinct since each of the techniques
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utilizes a different operator to compute the flux at cell interfaces. In order to understand,
compare, and assess the two time-stepping techniques, they were applied initially to the
model wave equation. There a conventional Fourier stability analysis could be carred
out, yielding amplification factors, and the stability characteristics for each scheme. Dis-
cussion of the evaluation of the two schemes will be presented and discussed in this

chapter.

4.1 Multistage Time-Stepping Scheme.

Modified Runge-Kutta methods, with standard coefficients, have been rather success-
ful when used in combination with central-difference, spatial-discretization techniques.
Unfortunately, they perform very poorly with upwind differencing schemes. In this sec-
tion an attempt has been made to modify the standard coefficients to achieve better per-
formance, resulting simultaneously in schemes that are, in general, of reduced accuracy
in time. To explore the damping properties and extend the stability limits of the explicit

multistage scheme, the scheme was first applied to the ordinary differential equation

d
d_(t] = —zq where =z > 0. 4.1)
and which has the analytical solution:
q = qoe (17 1e) (4.2)

Here, ¢, is the initial value of g at 1= 1,.

A Taylor series expansion for g**! around ¢" gives

dg" gt (A Bt (AD°
n+1 n i q q
= — At — — o ———— + ... 4.3
U= A T T s T (43)
Substituting for the derivatives of g in the above equation

P =g L (—z A (—z A + (=200 + (4.4)
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The above equation is the foundation of a numerical integration scheme known as the
modified Runge-Kutta Scheme [27].
Consider now the model wave equation in the form

91, 99 _

5t + ag = 0 (4.5)

where a is the wave speed which is assumed to be real and positive. Then

g _ _,9 _
== —azl = ~R(q) (4.6)

where R(g) represents the right hand side of eq. 4.6. If we assume that g can be

represented in an exponential form, then

g = qoe~ (7% (4.7)

d(] —z(t—to) (48)

— = —2zq 4.9)

The multistage explicit time-stepping can be used to advance eq. 4.9 in time from time

step n to n+1 in the following way

q1 =q" 4+ a1 AtR(q%)
q"y =q¢"+a2 tR(ql)
(4.10)

qm — qn +OmAtR(qm_1)

n+1 — oM

q q
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Comparing eq. 4.9 and eq. 4.6 yields

0
R(q) = aa—7 =zq 4.11)
I
If we define
P =Atxz, (4.12)

combine P with eq. 4.11 and substitute into eq. 4.10, we get
q"“ = q"(l + amP + amam_le + .+ alag....aum) (4.13)

By comparing the terms in eq. 4.13 and eq. 4.4, we can determine the temporal accuracy

of the multistage scheme. The scheme will be first order in time if
am = 1. (4.14)

The scheme will be second-order in time if

1
am =1, and ap_1 = 5 (4.15)
The scheme will be third-order in time if
1 1

am=1. ap_1= 5 and o= 3 (4.16)

The scheme will be fourth-order in time if
1 l l d 1 4.17)

am = 1. m—-1—= 7 Q-2 =7 . -3 = 7 .
m Q 1 5 2 3 aln am-3 1

and so on.
One can continue this progression and arrive at higher order schemes. It should be
emphasized that the leading coefficient a,, should always be 1.0 for the scheme to be

at least first order in time,
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The amplification factor of the multistage explicit time-stepping scheme, G, can be

derived from eq. 4.13 and will take the following form

n<+1
G = ‘7_”_= I +a1P+ajaaP?+ ...+ ar..apP™ (4.18)
q

The stability and damping properties of the multistage scheme are associated with
complex polynomial G. G is a function of the coefficients as and of P. The complex
function P is a function of the spatial operator used to interpolate g at the cell interface.
Thus the stability properties of the multistage scheme are tied to the spatial operator used
to compute the flux at the cell interface.

In this study a control volume approach was implemented where the spatial dis-

cretization of the wave equation takes the form:

_ d(] _ [qi-l—% - qi—%]
R(q) = as = a e - (4.19)

The extrapolation of the state variables to the cell interface is base on the so-called

~-scheme where,

n n— l
Q=q 7+ I[(l — #)A + (1 + £)vi]
: 1 (4.20)
(1?_% =q 7 + 1[(1 — K)Dio1 + (1 + K)Ti-1]
such that
Di=q—q-1 and  Vi=qiy1 — @ (4.21)

As mentioned in the previous chapter » determines the spatial accuracy of the scheme;
x =-1is a fully upwind second-order accurate scheme; & = 0 is an upwind biased,
second-order Fromm scheme; x = 1/3 is an upwind, biased third-order accurate scheme,
and « = | is a second-order accurate, central-difference scheme. The first-order scheme
is obtained by setting / to zero. For simplicity, in the present stability analysis the limiter

was not included in the x-scheme.

43



If we now assume the data to be harmonic
0 = Qr=jirr = Qoe’ (4.22)

where 7 is the spatial wave number ranging from O to , and [ is v —1. Values of 3
between 7/2 and 7 are considered to be high frequencies. Combining eq. 4.19, eq. 4.7

with eq. 4.20 yields

p= —CFL(I - e"“){l + 1[1—1—5(1 - e—“’) _ I—_A;—'”(l - e“’)” (4.23)

Fourier transform of the spatial-operator (P) is a function of the CFL number and the
wave number, P(CFL,3). The expression for the amplification factor, given by eq. 4.18,
defines the stability region of the scheme. The stability of the multistage scheme requires
that the modulus of the amplification factor IG| be less than unity. This expression gets
complicated if we attempt to substitute the expression for the complex polynomials, P,
into the expression for G and define the stability region of the scheme analytically. An
alternative way to determine the stability region of the scheme is to plot the modulus
of the amplification factor for the multistage explicit scheme and identify the stability
limit graphically.

The stability of the multistage scheme depends on the complex polynomial P and
the coefficients s of the multistage scheme. The locus of the Fourier transform, P,
superimposed on the contours of the amplification factor can be used to optimize the
coefficients of the explicit. multistage time-stepping scheme to better suit the upwind
schemes, and achieve better rates of convergence to steady-state. The modulus of
amplification factor |G| with the locus of Fourier transform for a first-order, four—stage
standard Runge-Kutta scheme are shown in Fig. 4.1 The influence of the coefficients
on the contours of the amplification factor had to be fully understood to facilitate the

selection of the optimum coefficient set. Optimization of the coefficients, a5, was carried
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Transform. P —e—e—, for a First-Order, Four-Stage Runge-Kutta Scheme, CFL =20

out by displaying the stability plots on a computer terminal. The changes in the shape
of the contours of |G| were observed in real time as the coefficients were changed. The
“islands” of low values of IGI correspond to the roots of eq. 4.18. The main purpose
of the optimization was to find a combination of the coefficients, as, such that, for the
largest possible CFL values, there would be good high frequency damping (low values
of IG) over a large range of CFL. That is, the optimal coefficients should maximize the
size of the islands, and make them as close to the real axis as possible. The optimization
was performed for the two-stage. three-stage, and four-stage schemes. For each of the
mentioned schemes the optimization was conducted for four different spatial operators:
first-order; second-order fully upwind (x = -1); second-order Fromm Scheme (x = 0);
and third-order upwind biased (x = 1/3). Tables 1-4 list the optimized coefficients for

the spatial operators mentioned above.
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Table 2 Multistage Coefficients for First-Order Scheme

Number of Stages

Multistage Coefficients

o a a3 a4
Two-Stage Scheme 1.0 0.22

Three-Stage Scheme 1.0 0.325 0.105

Four-Stage Scheme 1.0 0.34 0.152 0.056

Table 3 Multistage Coefficients for Second-Order Fully Upwind Scheme

Number of Stages

Multistage Coefficients

Qi az a3 Qg
Two-Stage Scheme 1.0 0.22
Three-Stage Scheme 1.0 0.4 0.15
Four-Stage Scheme 1.0 0.42 0.24 0.091

Table 4 Multistage Coefficients for Second-Order Fromm Scheme
Number of Stages Multistage Coefficients
ay a) a3 oy

Two-Stage Scheme 1.0 0.42
Three-Stage Scheme 1.0 0.44 0.21
Four-Stage Scheme 1.0 0.46 0.255 0.11

Table 5 Multistage Coefficients for Third-Order Upwind Biased Scheme

Number of Stages

Multistage Coefficients

ay a3 a3 a7:}
Two-Stage Scheme 1.0 0.46
Three-Stage Scheme 1.0 0.48 0.22
Four-Stage Scheme 1.0 0.44 0.26 0.135
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The simplest schemes to optimize were the two-stage versions, since only one
coefficient can be selected freely. The first coefficient aj is always equal to unity to
ensure that the scheme is at least first-order accurate in time. The challenge to optimize
the coefficients of the explicit multistage scheme increased by increasing the number of
stages, since the number of coefficients to be optimized increased. The most challenging
scheme to optimize was the four-stage scheme since the optimum combination of three
coefficients has to be found. The modulus of the amplification factor |Gl with the locus
of its Fourier transform (of the spatial 6pcrat0r, P, corresponding to a maximum CFL)
number is presented in Figs. 4.2, 4.3, and 4.4, for all the spatial operators used in this
study. The resulting stability plots will be shown only in the second quadrant (upper
half of the negative real part of the complex polynomial P) since they are symmetric
with respect to the real axis. Figures 4.5, 4.6, and 4.7 represent the magnitude of the
modulus of the amplification factor |G as a function of the spatial wave number, /3, and
the CFL number. By displaying the two sets of plots for a particular multistage scheme,
the stability region and the damping properties of the scheme can be fully displayed.
By increasing the number of stages. we are able to increase the CFL number, as shown
in Figs. 4.5, 4.6, and 4.7. The time to perform a four-stage explicit scheme is twice
that for a two-stage scheme. On the other hand the CFL number increased form 2 to
4, comparing with the case of a first-order scheme. This conclusion is also valid for
the remaining spatial operators, as shown in the stability plots. The main advantage of
going to a higher number of stages was the good damping characteristics for high wave
numbers. Considering the results of the stability analysis, the most promising schemes
of practical importance were the Four-Stage Fromm Scheme (x = 0) and the third-order
upwind biased Scheme (x = 1/3). The Fromm Scheme was preferred due to its low

numerical dispersion, demonstrated by results with the least oscillations around shocks.
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It is important to point out that, when multigrid acceleration techniques are imple-
mented the desire for maximum CFL number is not as important as the high frequency
damping requirement. The high frequency damping (or lack of it) will affect the rate of
convergence to steady-state more significantly than the CFL number. The choice of the
optimum CFL number, when utilizing multigrid acceleration techniques, should be based
on how well high frequencies are damped.

It should be mentioned here that, in a parallel effort, van Leer, Tai, and Powell [35],
and Gaffney [112], also tried to optimize the Runge-Kutta coefficients for applications
with the upwind methods. The van Leer, Tai, and Powell approach was somewhat
different than the work discussed previously. Their approach assumed that a genuine
and practical multi-dimensional characteristic formulation of the Euler equations could
be found, and then they optimized the Runge-Kutta coefficients for only one value of the
CFL number. They argued that each wave would propagate at its optimum CFL-number.
Unfortunately, there is no such formulation for three dimensional cases. Generally, the
maximum CFL numbers, for the van Leer, Tai, and Powell approach, were lower, and

the damping was effectve over a narrower range of CFL numbers.
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